940 research outputs found

    Tests of non-standard electroweak couplings of right-handed quarks

    Get PDF
    The standard model can be interpreted as the leading order of a Low-Energy Effective Theory (LEET) invariant under a higher non linearly realized symmetry SnatSU(2)W×U(1)YS_{nat}\supset SU(2)_W \times U(1)_Y equipped with a systematic power counting. Within the minimal version of this ``not quite decoupling'' LEET, the dominant non-standard effect appears at next-to-leading order (NLO) and is a modification of the couplings of fermions to W and Z. In particular, the coupling of right-handed quarks to Z is modified and a direct coupling of right-handed quarks to W emerges. Charged right-handed lepton currents are forbidden by an additional discrete symmetry in the lepton sector originally designed to suppress Dirac neutrino masses. A complete NLO analysis of experimental constraints on these modified couplings is presented. Concerning couplings of light quarks, the interface of the electroweak tests with QCD aspects is discussed in detail.Comment: 56 pages, 14 figures, v2: references added, minor modifications in the text, accepted for publication in JHE

    Quantum corrections to the effective neutrino mass operator in 5D MSSM

    Get PDF
    We discuss in detail a five-dimensional Minimal Supersymmetric Standard Model compactified on S1/Z2S^1/Z_2 extended by the effective Majorana neutrino mass operator. We study the evolution of neutrino masses and mixings. Masses and angles, in particular the atmospheric mixing angle θ23\theta_{23}, can be significantly lowered at high energies with respect to their value at low energy.Comment: 23 pages, 13 figure

    Thermodynamics and Phase Structure of the Two-Flavor Nambu--Jona-Lasinio Model Beyond Large-N_c

    Full text link
    The optimized perturbation theory (OPT) method is applied to the SU(2)SU(2) version of the Nambu--Jona-Lasinio (NJL) model both at zero and at finite temperature and/or density. At the first nontrivial order the OPT exhibits a class of 1/N_c corrections which produce nonperturbative results that go beyond the standard large-N_c, or mean-field approximation. The consistency of the OPT method with the Goldstone theorem at this order is established, and appropriate OPT values of the basic NJL (vacuum) parameters are obtained by matching the pion mass and decay constant consistently. Deviations from standard large-N_c relations induced by OPT at this order are derived, for example, for the Gell--Mann-Oakes-Renner relation. Next, the results for the critical quantities and the phase diagram of the model, as well as a number of other thermodynamical quantities of interest, are obtained with OPT and then contrasted with the corresponding results at large N_c.Comment: 29 pages, 20 figures, revtex. Minor corrections. In press Phys. Rev.

    Two regularizations - two different models of Nambu-Jona-Lasinio

    Full text link
    Two variants of the Nambu--Jona-Lasinio model -- the model with 4-dimensional cutoff and the model with dimensionally-analytical regularization -- are systematically compared. It is shown that they are, in essence, two different models of light-quark interaction. In the mean-field approximation the distinction becomes apparent in a behavior of scalar amplitude near the threshold. For 4-dimensional cutoff the pole term can be extracted, which corresponds to sigma-meson. For dimensionally-analytical regularization the singularity of the scalar amplitude is not pole, and this singularity is quite disappeared at some value of the regularization parameter. Still more essential distinction of these models exists in the next-to-leading order of mean-field expansion. The calculations of meson contributions in the quark chiral condensate and in the dynamical quark mass demonstrate, that these contributions though their relatively smallness can destabilize the Nambu--Jona-Lasinio model with 4-dimensional cutoff. On the contrary, the Nambu--Jona-Lasinio model with dimensionally-analytical regularization is stabilized with the next-to-leading order, i.e. the value of the regularization parameter shifts to the stability region, where these contributions decrease.Comment: 14 pages; Journal version; parameter fixing procedure is modifie

    Hadronic unquenching effects in the quark propagator

    Full text link
    We investigate hadronic unquenching effects in light quarks and mesons. Within the non-perturbative continuum framework of Schwinger-Dyson and Bethe-Salpeter equations we quantify the strength of the back reaction of the pion onto the quark-gluon interaction. To this end we add a Yang-Mills part of the interaction such that unquenched lattice results for various current quark masses are reproduced. We find considerable effects in the quark mass function at low momenta as well as for the chiral condensate. The quark wave function is less affected. The Gell--Mann-Oakes-Renner relation is valid to good accuracy up to pion masses of 400-500 MeV. As a byproduct of our investigation we verify the Coleman theorem, that chiral symmetry cannot be broken spontaneously when QCD is reduced to 1+1 dimensions.Comment: 27 pages, 15 figures, minor corrections and clarifications; version to appear in PR

    Physical simulation of wind pressure on building models at various arrangement and airflow conditions

    Get PDF
    The results of modeling and distribution of the pressure coefficient on the faces of the faces of the model of a high-rise building with a relative height of H/a = 3 and 6 are obtained under the influence of vortex flows created by an obstacle with similar geometric parameters with its lateral displacement from the longitudinal axis of the channel. The accepted range of transverse displacements is L2/a = 0.5; 1; 1.5; 2. In the range of studies, the airflow angle of 0 degrees was adopted with the maximum Reynolds number (Re) = 4.25´104. The distances between the models in the wake correspond to the calibers L1/a = 1.5; 3 and 6. A series of experiments was carried out on the basis of the theory of modeling. The experiments are based on the modeling of the model buildings under study on the basis of the similarity theory. Systematic data are obtained on the distribution of the pressure coefficients Cp on the faces of the model, depending on its location in the track of the upstream model with a change in the distance between them in the transverse direction relative to the direction of the air flow

    Advances in the knowledge of the inocybe mixtilis group (Inocybaceae, Agaricomycetes), through molecular and morphological studies

    Get PDF
    Inocybe mixtilis constitutes a complex of species characterized by nodulose-angulose spores, absence of cortina and a more or less bulbous marginate stipe that is not darkening when desiccated. In order to elucidate species limits within the I. mixtilis complex, an ITS-RPB2 phylogeny was performed and interpreted using morphological and ecological characters. Six supported clades were obtained in our analyses that correspond to I. mixtilis, I. subtrivialis, and four new species to science: I. ceskae, I. johannis-stanglii, I. nothomixtilis and I. occulta. Species within this complex can be morphologically recognized through a unique combination of morphological characters, such as the spore shape, cystidial length and shape, presence and development of the velipellis and pileus colour and viscidity. Nevertheless, those characters overlap, especially among I. mixtilis, I. ceskae and I. occulta, and intermediate collections are therefore more reliably identified through ITS-sequencing. Two species, I. ceskae and I. occulta are present in both North America and Europe, while the rest are so far only known in Europe, or Europe and Asia (I. mixtilis). All species, except I. johannis-stanglii, seem to be able to establish ectomycorrhizal association both with conifers and angiosperms. Descriptions, colour illustrations and a key to all known species in the I. mixtilis group are provided

    On the influence of Stark broadening on Si I lines in stellar atmospheres

    Full text link
    We study the influence of Stark broadening and stratification effects on Si\i lines in the rapidly oscillating (roAp) star 10 Aql, where the Si\i 6142.48 \AA and 6155.13 \AA lines are asymmetrical and shifted. First we have calculated Stark broadening parameters using the semiclassical perturbation method for three Si\i lines: 5950.2 \AA, 6142.48 \AA and 6155.13 \AA. We revised the synthetic sp$ calculation code taking into account both Stark width and shift for these lines. From the comparison of our calculations with the observations we found that Stark broadening + the stratification effect can explain asymmetry of the Si\i 6142.48 \AA and 6155.13 \AA lines in the atmospere of roAp star 10 Aql.Comment: Accepted to A&

    Phase diagram of neutron-rich nuclear matter and its impact on astrophysics

    Full text link
    Dense matter as it can be found in core-collapse supernovae and neutron stars is expected to exhibit different phase transitions which impact the matter composition and equation of state, with important consequences on the dynamics of core-collapse supernova explosion and on the structure of neutron stars. In this paper we will address the specific phenomenology of two of such transitions, namely the crust-core solid-liquid transition at sub-saturation density, and the possible strange transition at super-saturation density in the presence of hyperonic degrees of freedom. Concerning the neutron star crust-core phase transition at zero and finite temperature, it will be shown that, as a consequence of the presence of long-range Coulomb interactions, the equivalence of statistical ensembles is violated and a clusterized phase is expected which is not accessible in the grand-canonical ensemble. A specific quasi-particle model will be introduced to illustrate this anomalous thermodynamics and some quantitative results relevant for the supernova dynamics will be shown. The opening of hyperonic degrees of freedom at higher densities corresponding to the neutron stars core modifies the equation of state. The general characteristics and order of phase transitions in this regime will be analyzed in the framework of a self-consistent mean-field approach.Comment: Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Chiral restoration effects on the shear viscosity of a pion gas

    Full text link
    We investigate the shear viscosity of a pion gas in relativistic kinetic theory, using the Nambu-Jona-Lasinio model to construct the pion mass and the pi-pi interaction at finite temperature. Whereas at low temperatures the scattering properties and, hence, the viscosity are in agreement with lowest-order chiral perturbation theory, we find strong medium modifications in the crossover region. Here the system is strongly coupled and the scattering lengths diverge, similarly as for ultra-cold Fermi gases at a Feshbach resonance. As a consequence, the ratio eta/s is found to be strongly reduced as compared to calculations without medium-modified masses and scattering amplitudes. However, the quantitative results are very sensitive to the details of the applied approximations.Comment: 15 pages, 12 figures; v2: extended discussions of the dressed sigma propagator and the low-temperature limit, typos corrected, accepted versio
    corecore